3.3.7 \(\int \frac {\log (a+b x)}{(a+b x) (d+e x)^{3/2}} \, dx\) [207]

Optimal. Leaf size=316 \[ \frac {4 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{(b d-a e)^{3/2}}+\frac {2 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )^2}{(b d-a e)^{3/2}}+\frac {2 \log (a+b x)}{(b d-a e) \sqrt {d+e x}}-\frac {2 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right ) \log (a+b x)}{(b d-a e)^{3/2}}-\frac {4 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right ) \log \left (\frac {2}{1-\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}}\right )}{(b d-a e)^{3/2}}-\frac {2 \sqrt {b} \text {Li}_2\left (1-\frac {2}{1-\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}}\right )}{(b d-a e)^{3/2}} \]

[Out]

4*arctanh(b^(1/2)*(e*x+d)^(1/2)/(-a*e+b*d)^(1/2))*b^(1/2)/(-a*e+b*d)^(3/2)+2*arctanh(b^(1/2)*(e*x+d)^(1/2)/(-a
*e+b*d)^(1/2))^2*b^(1/2)/(-a*e+b*d)^(3/2)-2*arctanh(b^(1/2)*(e*x+d)^(1/2)/(-a*e+b*d)^(1/2))*ln(b*x+a)*b^(1/2)/
(-a*e+b*d)^(3/2)-4*arctanh(b^(1/2)*(e*x+d)^(1/2)/(-a*e+b*d)^(1/2))*ln(2/(1-b^(1/2)*(e*x+d)^(1/2)/(-a*e+b*d)^(1
/2)))*b^(1/2)/(-a*e+b*d)^(3/2)-2*polylog(2,1-2/(1-b^(1/2)*(e*x+d)^(1/2)/(-a*e+b*d)^(1/2)))*b^(1/2)/(-a*e+b*d)^
(3/2)+2*ln(b*x+a)/(-a*e+b*d)/(e*x+d)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.66, antiderivative size = 316, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 13, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.565, Rules used = {2458, 2389, 65, 214, 2390, 12, 1601, 6873, 6131, 6055, 2449, 2352, 2356} \begin {gather*} -\frac {2 \sqrt {b} \text {PolyLog}\left (2,1-\frac {2}{1-\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}}\right )}{(b d-a e)^{3/2}}+\frac {2 \log (a+b x)}{\sqrt {d+e x} (b d-a e)}+\frac {2 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )^2}{(b d-a e)^{3/2}}+\frac {4 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{(b d-a e)^{3/2}}-\frac {2 \sqrt {b} \log (a+b x) \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{(b d-a e)^{3/2}}-\frac {4 \sqrt {b} \log \left (\frac {2}{1-\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}}\right ) \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{(b d-a e)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Log[a + b*x]/((a + b*x)*(d + e*x)^(3/2)),x]

[Out]

(4*Sqrt[b]*ArcTanh[(Sqrt[b]*Sqrt[d + e*x])/Sqrt[b*d - a*e]])/(b*d - a*e)^(3/2) + (2*Sqrt[b]*ArcTanh[(Sqrt[b]*S
qrt[d + e*x])/Sqrt[b*d - a*e]]^2)/(b*d - a*e)^(3/2) + (2*Log[a + b*x])/((b*d - a*e)*Sqrt[d + e*x]) - (2*Sqrt[b
]*ArcTanh[(Sqrt[b]*Sqrt[d + e*x])/Sqrt[b*d - a*e]]*Log[a + b*x])/(b*d - a*e)^(3/2) - (4*Sqrt[b]*ArcTanh[(Sqrt[
b]*Sqrt[d + e*x])/Sqrt[b*d - a*e]]*Log[2/(1 - (Sqrt[b]*Sqrt[d + e*x])/Sqrt[b*d - a*e])])/(b*d - a*e)^(3/2) - (
2*Sqrt[b]*PolyLog[2, 1 - 2/(1 - (Sqrt[b]*Sqrt[d + e*x])/Sqrt[b*d - a*e])])/(b*d - a*e)^(3/2)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 1601

Int[(Pp_)/(Qq_), x_Symbol] :> With[{p = Expon[Pp, x], q = Expon[Qq, x]}, Simp[Coeff[Pp, x, p]*(Log[RemoveConte
nt[Qq, x]]/(q*Coeff[Qq, x, q])), x] /; EqQ[p, q - 1] && EqQ[Pp, Simplify[(Coeff[Pp, x, p]/(q*Coeff[Qq, x, q]))
*D[Qq, x]]]] /; PolyQ[Pp, x] && PolyQ[Qq, x]

Rule 2352

Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-e^(-1))*PolyLog[2, 1 - c*x], x] /; FreeQ[{c, d, e
}, x] && EqQ[e + c*d, 0]

Rule 2356

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Simp[(d + e*x)^(q + 1)
*((a + b*Log[c*x^n])^p/(e*(q + 1))), x] - Dist[b*n*(p/(e*(q + 1))), Int[((d + e*x)^(q + 1)*(a + b*Log[c*x^n])^
(p - 1))/x, x], x] /; FreeQ[{a, b, c, d, e, n, p, q}, x] && GtQ[p, 0] && NeQ[q, -1] && (EqQ[p, 1] || (Integers
Q[2*p, 2*q] &&  !IGtQ[q, 0]) || (EqQ[p, 2] && NeQ[q, 1]))

Rule 2389

Int[(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_))^(q_))/(x_), x_Symbol] :> Dist[1/d, Int[(d
 + e*x)^(q + 1)*((a + b*Log[c*x^n])^p/x), x], x] - Dist[e/d, Int[(d + e*x)^q*(a + b*Log[c*x^n])^p, x], x] /; F
reeQ[{a, b, c, d, e, n}, x] && IGtQ[p, 0] && LtQ[q, -1] && IntegerQ[2*q]

Rule 2390

Int[(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_) + (e_.)*(x_)^(r_.))^(q_.))/(x_), x_Symbol] :> With[{u = IntHi
de[(d + e*x^r)^q/x, x]}, Simp[u*(a + b*Log[c*x^n]), x] - Dist[b*n, Int[Dist[1/x, u, x], x], x]] /; FreeQ[{a, b
, c, d, e, n, r}, x] && IntegerQ[q - 1/2]

Rule 2449

Int[Log[(c_.)/((d_) + (e_.)*(x_))]/((f_) + (g_.)*(x_)^2), x_Symbol] :> Dist[-e/g, Subst[Int[Log[2*d*x]/(1 - 2*
d*x), x], x, 1/(d + e*x)], x] /; FreeQ[{c, d, e, f, g}, x] && EqQ[c, 2*d] && EqQ[e^2*f + d^2*g, 0]

Rule 2458

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_.) + (g_.)*(x_))^(q_.)*((h_.) + (i_.)*(x_))
^(r_.), x_Symbol] :> Dist[1/e, Subst[Int[(g*(x/e))^q*((e*h - d*i)/e + i*(x/e))^r*(a + b*Log[c*x^n])^p, x], x,
d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, h, i, n, p, q, r}, x] && EqQ[e*f - d*g, 0] && (IGtQ[p, 0] || IGtQ[
r, 0]) && IntegerQ[2*r]

Rule 6055

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-(a + b*ArcTanh[c*x])^p)
*(Log[2/(1 + e*(x/d))]/e), x] + Dist[b*c*(p/e), Int[(a + b*ArcTanh[c*x])^(p - 1)*(Log[2/(1 + e*(x/d))]/(1 - c^
2*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0]

Rule 6131

Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*(x_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcTanh[c
*x])^(p + 1)/(b*e*(p + 1)), x] + Dist[1/(c*d), Int[(a + b*ArcTanh[c*x])^p/(1 - c*x), x], x] /; FreeQ[{a, b, c,
 d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0]

Rule 6873

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rubi steps

\begin {align*} \int \frac {\log (a+b x)}{(a+b x) (d+e x)^{3/2}} \, dx &=\frac {\text {Subst}\left (\int \frac {\log (x)}{x \left (\frac {b d-a e}{b}+\frac {e x}{b}\right )^{3/2}} \, dx,x,a+b x\right )}{b}\\ &=\frac {\text {Subst}\left (\int \frac {\log (x)}{x \sqrt {\frac {b d-a e}{b}+\frac {e x}{b}}} \, dx,x,a+b x\right )}{b d-a e}-\frac {e \text {Subst}\left (\int \frac {\log (x)}{\left (\frac {b d-a e}{b}+\frac {e x}{b}\right )^{3/2}} \, dx,x,a+b x\right )}{b (b d-a e)}\\ &=\frac {2 \log (a+b x)}{(b d-a e) \sqrt {d+e x}}-\frac {2 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right ) \log (a+b x)}{(b d-a e)^{3/2}}-\frac {\text {Subst}\left (\int -\frac {2 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d-\frac {a e}{b}+\frac {e x}{b}}}{\sqrt {b d-a e}}\right )}{\sqrt {b d-a e} x} \, dx,x,a+b x\right )}{b d-a e}-\frac {2 \text {Subst}\left (\int \frac {1}{x \sqrt {\frac {b d-a e}{b}+\frac {e x}{b}}} \, dx,x,a+b x\right )}{b d-a e}\\ &=\frac {2 \log (a+b x)}{(b d-a e) \sqrt {d+e x}}-\frac {2 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right ) \log (a+b x)}{(b d-a e)^{3/2}}+\frac {\left (2 \sqrt {b}\right ) \text {Subst}\left (\int \frac {\tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d-\frac {a e}{b}+\frac {e x}{b}}}{\sqrt {b d-a e}}\right )}{x} \, dx,x,a+b x\right )}{(b d-a e)^{3/2}}-\frac {(4 b) \text {Subst}\left (\int \frac {1}{-\frac {b d-a e}{e}+\frac {b x^2}{e}} \, dx,x,\sqrt {d+e x}\right )}{e (b d-a e)}\\ &=\frac {4 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{(b d-a e)^{3/2}}+\frac {2 \log (a+b x)}{(b d-a e) \sqrt {d+e x}}-\frac {2 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right ) \log (a+b x)}{(b d-a e)^{3/2}}+\frac {\left (4 b^{3/2}\right ) \text {Subst}\left (\int \frac {x \tanh ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {b d-a e}}\right )}{a e+b \left (-d+x^2\right )} \, dx,x,\sqrt {d+e x}\right )}{(b d-a e)^{3/2}}\\ &=\frac {4 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{(b d-a e)^{3/2}}+\frac {2 \log (a+b x)}{(b d-a e) \sqrt {d+e x}}-\frac {2 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right ) \log (a+b x)}{(b d-a e)^{3/2}}+\frac {\left (4 b^{3/2}\right ) \text {Subst}\left (\int \frac {x \tanh ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {b d-a e}}\right )}{-b d+a e+b x^2} \, dx,x,\sqrt {d+e x}\right )}{(b d-a e)^{3/2}}\\ &=\frac {4 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{(b d-a e)^{3/2}}+\frac {2 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )^2}{(b d-a e)^{3/2}}+\frac {2 \log (a+b x)}{(b d-a e) \sqrt {d+e x}}-\frac {2 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right ) \log (a+b x)}{(b d-a e)^{3/2}}-\frac {(4 b) \text {Subst}\left (\int \frac {\tanh ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {b d-a e}}\right )}{1-\frac {\sqrt {b} x}{\sqrt {b d-a e}}} \, dx,x,\sqrt {d+e x}\right )}{(b d-a e)^2}\\ &=\frac {4 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{(b d-a e)^{3/2}}+\frac {2 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )^2}{(b d-a e)^{3/2}}+\frac {2 \log (a+b x)}{(b d-a e) \sqrt {d+e x}}-\frac {2 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right ) \log (a+b x)}{(b d-a e)^{3/2}}-\frac {4 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right ) \log \left (\frac {2}{1-\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}}\right )}{(b d-a e)^{3/2}}+\frac {(4 b) \text {Subst}\left (\int \frac {\log \left (\frac {2}{1-\frac {\sqrt {b} x}{\sqrt {b d-a e}}}\right )}{1-\frac {b x^2}{b d-a e}} \, dx,x,\sqrt {d+e x}\right )}{(b d-a e)^2}\\ &=\frac {4 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{(b d-a e)^{3/2}}+\frac {2 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )^2}{(b d-a e)^{3/2}}+\frac {2 \log (a+b x)}{(b d-a e) \sqrt {d+e x}}-\frac {2 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right ) \log (a+b x)}{(b d-a e)^{3/2}}-\frac {4 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right ) \log \left (\frac {2}{1-\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}}\right )}{(b d-a e)^{3/2}}-\frac {\left (4 \sqrt {b}\right ) \text {Subst}\left (\int \frac {\log (2 x)}{1-2 x} \, dx,x,\frac {1}{1-\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}}\right )}{(b d-a e)^{3/2}}\\ &=\frac {4 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{(b d-a e)^{3/2}}+\frac {2 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )^2}{(b d-a e)^{3/2}}+\frac {2 \log (a+b x)}{(b d-a e) \sqrt {d+e x}}-\frac {2 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right ) \log (a+b x)}{(b d-a e)^{3/2}}-\frac {4 \sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right ) \log \left (\frac {2}{1-\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}}\right )}{(b d-a e)^{3/2}}-\frac {2 \sqrt {b} \text {Li}_2\left (1-\frac {2}{1-\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}}\right )}{(b d-a e)^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 1.23, size = 183, normalized size = 0.58 \begin {gather*} \frac {2 \left (-\frac {2 \sqrt {\frac {b (d+e x)}{e (a+b x)}} \, _3F_2\left (\frac {3}{2},\frac {3}{2},\frac {3}{2};\frac {5}{2},\frac {5}{2};-\frac {b d-a e}{a e+b e x}\right )}{a e+b e x}+\frac {9 \left (\sqrt {b d-a e}-\sqrt {e} \sqrt {a+b x} \sqrt {\frac {b (d+e x)}{e (a+b x)}} \sinh ^{-1}\left (\frac {\sqrt {b d-a e}}{\sqrt {e} \sqrt {a+b x}}\right )\right ) \log (a+b x)}{(b d-a e)^{3/2}}\right )}{9 \sqrt {d+e x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Log[a + b*x]/((a + b*x)*(d + e*x)^(3/2)),x]

[Out]

(2*((-2*Sqrt[(b*(d + e*x))/(e*(a + b*x))]*HypergeometricPFQ[{3/2, 3/2, 3/2}, {5/2, 5/2}, -((b*d - a*e)/(a*e +
b*e*x))])/(a*e + b*e*x) + (9*(Sqrt[b*d - a*e] - Sqrt[e]*Sqrt[a + b*x]*Sqrt[(b*(d + e*x))/(e*(a + b*x))]*ArcSin
h[Sqrt[b*d - a*e]/(Sqrt[e]*Sqrt[a + b*x])])*Log[a + b*x])/(b*d - a*e)^(3/2)))/(9*Sqrt[d + e*x])

________________________________________________________________________________________

Maple [F]
time = 0.26, size = 0, normalized size = 0.00 \[\int \frac {\ln \left (b x +a \right )}{\left (b x +a \right ) \left (e x +d \right )^{\frac {3}{2}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(ln(b*x+a)/(b*x+a)/(e*x+d)^(3/2),x)

[Out]

int(ln(b*x+a)/(b*x+a)/(e*x+d)^(3/2),x)

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(b*x+a)/(b*x+a)/(e*x+d)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(b*d-%e*a>0)', see `assume?` fo
r more detai

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(b*x+a)/(b*x+a)/(e*x+d)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(x*e + d)*log(b*x + a)/(b*d^2*x + a*d^2 + (b*x^3 + a*x^2)*e^2 + 2*(b*d*x^2 + a*d*x)*e), x)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(ln(b*x+a)/(b*x+a)/(e*x+d)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(b*x+a)/(b*x+a)/(e*x+d)^(3/2),x, algorithm="giac")

[Out]

integrate(log(b*x + a)/((b*x + a)*(x*e + d)^(3/2)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\ln \left (a+b\,x\right )}{\left (a+b\,x\right )\,{\left (d+e\,x\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(log(a + b*x)/((a + b*x)*(d + e*x)^(3/2)),x)

[Out]

int(log(a + b*x)/((a + b*x)*(d + e*x)^(3/2)), x)

________________________________________________________________________________________